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1.​ Introduction 
 

The urgency of climate change underscores the pressing need for carbon offset initiatives 
alongside efforts to reduce greenhouse gas emissions. Interventions in agriculture and 
forestry are effective strategies for achieving carbon offsets. These interventions sequester 
carbon while enhancing climate resilience for farmers and local communities. The 
voluntary carbon market provides a promising source of financing for such interventions. 
With the increasing demand for carbon offsets, carbon credit projects are being 
implemented on a larger scale. Accurate estimation of emission reductions without the 
usual pitfalls of overestimation, double counting, and lack of reproducible 
documentation/evidence is crucial for the success of these projects. Emission reduction 
calculations and methodologies vary depending on the type of intervention. This initiative 
focuses on tree-based carbon sequestration and emission reduction and lays out a tech 
stack that can provide estimates for carbon sequestration with uncertainty quantification 
along with geo-located photographic documentation. 
 
 

2.​ Carbon Credit and Quantification of Carbon Sequestrations 

 

Carbon credits emerged from debt-for-nature swaps in the 1980s, eventually evolving into 
a market-based tool for reducing greenhouse gas emissions. The Kyoto Protocol required 
developed nations to cap emissions and allowed them to trade Assigned Amount Units 
(AAUs). This led to the creation of a global carbon market where businesses and countries 
could purchase credits to offset emissions by investing in renewable energy, forest 
conservation, and reforestation projects. One carbon credit represents the reduction or 
removal of one metric ton of carbon dioxide or its equivalent, with reductions facilitated 
through mechanisms such as Joint Implementation (JI), the Clean Development Mechanism 
(CDM), and International Emissions Trading (IET). 
 
Agricultural and forestry projects play a vital role in carbon sequestration by capturing and 
storing atmospheric CO₂ in trees and soil. Measuring carbon sequestration in these projects 
involves various methodologies including biomass sampling and soil carbon analysis. 
Assessing changes in tree biomass is essential for quantifying sequestration potential. Tree 
biomass is estimated using physical parameters such as diameter, height, and wood density. 
Numerous allometric equations have been developed to estimate tree biomass based on 
these parameters. These equations are based on either destructive sampling (tree 
harvesting) or non-invasive techniques such as LiDAR.   
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2.1.​ Need for Digital Measurement, Reporting and Verification (MRV) 

 
As demand for carbon offsets grows, carbon credit projects are being implemented at larger 
scales. This has led to practical challenges  in the monitoring, validation and verification of 
the projects. Having multiple plantation locations, multiple stakeholders along with 
multiple potential buyers, it is becoming increasingly tough to accurately measure, report 
and verify the claimed carbon sequestration credits. In most of the carbon projects the data 
for monitoring is collected by a manual plot survey. So, for large projects it is difficult to 
collect all of the plot level as well as tree level data.. Some small percentages of the 
representative samples are selected and actual data for the number of trees and tree 
parameters is collected.  The number of trees and total carbon stock in a project is typically 
estimated by extrapolating data collected from sample plots. However, this method 
presents two major challenges: the difficulty of on-ground data collection and the lack of 
verifiable ground truth, which undermines trust and transparency in carbon markets.  
 

This creates a pressing need for tools that can establish credible ground truth, enable 
remote monitoring of the plantation plots, track growth over time, and support more 
accurate carbon stock estimation.  
 
Recent advancements in remote sensing and machine learning offer promising solutions for 
reliable and scalable Monitoring, Reporting, and Verification (MRV) of carbon 
sequestration. 
 
Digital MRV, in particular, shows strong potential to become a cornerstone of voluntary 
carbon markets - especially for nature-based solutions (NBS) such as reforestation, 
afforestation, and sustainable land management. Digital MRV systems leverage advanced 
technologies like remote sensing, drone imaging, satellite imagery, and AI-powered 
analytics to provide precise, near-real-time insights on carbon sequestration and emissions 
reductions.  
 
By improving transparency and accountability, digital MRV systems help ensure that  
carbon credits reflect genuine and verifiable climate benefits. In addition, they reduce the 
costs and operational complexity of data collection and reporting, allowing e NBS projects 
to scale more efficiently and participate more widely in the voluntary carbon markets. 
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2.2.​ Options available for Digital MRV 
 

Accurate carbon sequestration estimation by trees is dependent on the tree biomass. Tree 
biomass estimation requires data on key tree  dimensions like  diameter at breast height 
(DBH), tree crown size and tree height along with some knowledge about non-dimensional 
properties like the wood density. The different data sources for obtaining tree dimensions 
include: 
 

1.​ Optical infrared satellite 
2.​ Satellite-based LiDAR 
3.​ Satellite-based photogrammetry 
4.​ UAV-based LiDAR 
5.​ Terrestrial LiDAR 
6.​ UAV-based photogrammetry 

 
Satellite based data is suitable for contiguous patches of forest and large trees but trees of 
small and medium size don’t show up effectively even in the high resolution satellite data. 
Thus in the early years of plantation when the trees are small, their monitoring for 
documentation and survival rates is not possible using the satellite data. Further, even 
when the trees are large enough to be eligible for a carbon credit assessment they are still 
too small for the satellite data to accurately extract their dimensions. Additionally, satellite 
data is available in large land swathes (tiles). With scattered plantations on small land 
holdings (1-2 acres) a very small percentage of the data in the large tile is of interest and 
this makes it cost prohibitive even when the trees are large enough to be seen in the 
satellite imagery. Owing to these deficiencies, for NBS solutions like small holder 
agroforestry projects, drone (UAV) based data collection is an effective alternative. 
 
Zhou et al. (2022) used UAV-LiDAR for estimating the 3D green volume and above-ground 
biomass of urban forest trees, achieving the highest accuracy with the voxel coupling 
convex hull by slices algorithm with percentage root mean square error (RMSE) on biomass 
of 15.12%.  Jayathunga, Owari, & Tsyuki (2018) used fixed-wing UAV photogrammetry with 
LiDAR derived Digital Terrain Model (DTM) to estimate tree volume and biomass, finding 
percentage RMSE values of 17.4% for photogrammetry and 16.7% for LiDAR. 
Mayamanikandan, Reddy, & Jha (2019)used terrestrial LiDAR data for volume estimation of 
teak trees in Central Indian Forests, achieving high accuracy (volume R² = 0.958) with an 
average volume bias of 5.13% compared to manual measurements. 
 
Literature indicates (Mayamanikandan, Reddy, & Jha, 2019) that terrestrial LiDAR data has 
a lowest error (5.13%) in wood volume and biomass measurement but is costly and 
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impractical for large-scale implementation. Aerial LiDAR and photogrammetry show 
comparable accuracy, with photogrammetry being more cost-effective and easier to 
implement. Therefore, in our digital-MRV approach, aerial photogrammetry is the method 
of choice  for remote monitoring, tracking, and estimation of tree carbon sequestration. 
 
 

2.3.​ Estimation of Tree Carbon Sequestration Using Aerial 
Photogrammetry 

 
According to the Verra module VMD0001 (Verified Carbon Standard, 2022), tree carbon 
sequestration is a function of tree biomass. Carbon sequestration can be calculated from 
tree biomass, carbon fraction, and the molecular weight ratio of CO2 to carbon. The 
equation is as follows: 
 
Carbon sequestration (CO2)  = Tree Biomass * Carbon Fraction * (44/12). 
 
Tree biomass is calculated using allometric and volumetric equations from forestry 
literature.  
Brahma et al. (2021) reviewed forest biomass estimation equations in India, evaluating 
species-specific and multi-species equations for trees, bamboos, palms, and bananas. They 
identified 85 species-specific and six multi-species equations, with half based on a 
power-law function using diameter at breast height (DBH). (Sileshi, 2014) found that tree 
height (H) and tree wood density (ρ) are essential co-variables with DBH for accurate 
biomass estimation. Therefore, measuring tree diameter at breast height (DBH), tree 
height, and wood density is critical for accurate tree biomass estimation. Here, we are not 
mentioning which type of equation we want to proceed with. 
 
In photogrammetry technology, aerial data collected from the drone can be converted into 
the form of the orthorectified image named as orthomosaic. When flying over an area 
where the data needs to be collected, the drone captures a mosaic of individual images that 
are then stitched together to form the orthomosaic. Additionally, using SfM (structure from 
motion) and MVS (multi-view stereo) techniques, a point cloud can be generated from the 
image mosaic that can then be interpolated and projected to generate a Digital Elevation 
Model (DEM) corresponding to the orthomosaic. While an orthomosaic is a three channel 
RGB (Red-Green-Blue) image, the DEM is a single layer data that stores elevation values per 
pixel. Both the orthomosaics and the DEM are stored as geo-referenced GeoTiff files. This 
geo-referencing allows for extraction of geo-location data when the GeoTiffs are further 
processed.  To make use of the  data (orthomosaic and the DEM) generated from drone 
based photogrammetry, it is essential to extract key tree dimensions that can be then fed 
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into a suitable allometric equation for biomass calculation. . The first step in this process is 
the detection of individual trees in  the orthomosaic image. For every detected tree, its 
crown size can be calculated by knowing the number of image pixels it occupies in the NS 
and EW direction along with the ground sampling distance (GSD). GSD is the ground 
distance each image pixel represents. The region of detection for every tree in the 
orthomosaic can be mapped to a corresponding location in the DEM to extract the height of 
each tree. A regression model trained on field measurements can then be used to predict 
the DBH for every tree as an output with tree height and its crown size as inputs. Once the 
DBH, crown size and tree height are known, an allometric equation of choice (either one 
that uses only DBH or one that uses both DBH and tree height) can be used to estimate the 
biomass and carbon sequestered in every tree. Summing up the data over all trees 
generates a plot level biomass estimate. With the geo-referenced GeoTiff, the geolocations 
of every tree in the plot can also be reported. 
 

3.​ Tree Crown Detection 

​
In literature, there are two major approaches for tree detection: 

1.​ Rule-based detection: Tree segmentation, template matching 
2.​ Detection using deep learning methods 

 
There is plenty of literature available on both the approaches. Ke & Quackenbush (2011) 
evaluate three tree crown detection and delineation algorithms—watershed segmentation, 
region growing, and valley-following—using high-resolution aerial and satellite imagery. 
The region growing method showed the highest accuracy for softwood stands, with a 70% 
accuracy rate and a 15% root mean square error for crown diameter estimation. Zheng et 
al. (2020)developed a Multi-level Attention Domain Adaptation Network (MADAN) for oil 
palm tree detection, achieving an 84.81% F1-score. Yao et al. (2021)developed four deep 
convolutional neural networks for tree detection, with the Encoder-Decoder Network 
achieving an average accuracy greater than 91.58%. 
 
Neupane, Horanont, & Nguyen (2019)used deep learning for banana plant detection and 
counting, achieving up to 96% accuracy. Skole et al. (2025)developed a deep learning model 
for monitoring trees outside forests in South Asia using high-resolution satellite images. 
Weinstein et al. (2020, 2020)introduced a cost-effective machine vision system for tree 
identification and mapping using UAV-captured RGB images and convolutional neural 
networks (CNN). 
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Literature indicates Khan & Gupta (2018) that deep learning models are preferred for tree 
crown detection due to their superior accuracy and ability to handle complex datasets. 
Unlike rule-based models that rely on predefined rules and manual feature extraction, deep 
learning models can automatically learn and extract relevant features from the raw data, 
making them more adaptable to diverse and challenging environments. Additionally, deep 
learning models are highly scalable, allowing them to effectively manage large datasets and 
provide more reliable detection results. 
 
Hence, we prefer an object detection deep learning approach for tree detection. 
 
 

4.​ Tree Detection Model Training 

 

In an automated flow of biomass sequestration calculation on agroforestry plots, the first 
step is to gather the drone orthomosaic of the plot (RGB data) along with a digital elevation 
model or DEM. Mavic M series of DJI made drones is used for this purpose. This drone uses 
image overlap to generate elevation maps using structure from motion technique. The 
ground sampling distance of the orthomosaic and of the generated DEM is between 2-3 cm 
when the flight height is set to approximately ABCD meters.. DEM is a single channel data 
with one elevation value per pixel of the DEM. A sample orthomosaic along with 
corresponding DEM is shown in Figure 1. 
 

      
Figure 1: Sample drone orthomosaic and DEM data for an agroforestry plot 
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Although in the initial years of plantation of an agroforest, the trees are not large enough 
for carbon credit issuance, the detection of very small sized saplings is still important for 
various reasons. 
 

1.​ It allows for documentation of plantations which leads to robustness of MRV 
procedures required in the carbon credit market 

2.​ Via detection of tree saplings, survival rates of samplings can be determined and 
documented leading to replantation decisions and farmer feedback 

3.​ Detection of trees on georeferenced tif images allows for extraction of GPS locations 
of trees; also important for MRV documentation 

 
For these reasons, an automated, machine learning based, tree detection system needs to be 
established for detecting both small and large trees starting with a drone orthomosaic as 
the input. 
 
 

4.1.​ Data Annotation 
 

There are different types of annotations used in the field of computer vision: bounding 
boxes, Polygonal Segmentation, Semantic Segmentation, 3D cuboids, Key-Point, Landmark, 
Lines and Splines. Bounding boxes are easy to annotate, widely used, and most suitable for 
our purpose and so they are a natural choice for annotating trees in our images.  
 
For a computationally optimal model training which  is both memory efficient and requires 
a practically small annotation cost, training the model on fully annotated orthomosaics is 
not an ideal solution. The orthomastics are large in size (of the order of 10^6 to 10^8 pixels 
with sizes ranging from  to 1 GB) and hence makes them a poor choice to be used in ML 
model training. Further, each orthomosaic can contain anywhere from 300 - 800 objects 
(trees) that would need to be fully annotated before training. Doing this much annotation 
on many orthomosaics is a very costly proposition in terms of the time required. Ideally, 
annotating only a small number of trees from an orthomosaic should suffice since each tree 
in the orthomosaic and the background (ground) is mostly similar and this repeated 
information in an orthomosaic means that a smaller subset of information should be able to 
represent almost all of the information contained in the full orthomosaic. For small trees, 
even with a high resolution of the drone orthomosaic, the image covers a fairly large swathe 
of the ground (100-200 meters in one direction) and at this scale the small size of saplings 
make them difficult to spot and annotate.  
 
To overcome these challenges, the training-test-validation sets are prepared by cropping 
small tiles from the entire image (500 px by 500 px to 800 px by 800 px) which capture the 

11 



crux of how the trees/saplings look on that particular land, the soil type, the intercropping 
pattern and other geophysical parameters. This approach drastically reduces the burden of 
annotation (by having to annotate only a small subset of trees from a plot) and provides 
high visibility of samplings on a small tile leading to accurate complete annotations without 
missing sapling objects. Crops are very small in size and can easily be pushed on to a GPU 
and hence allows parallel processing and significant computational gains during model 
training as well as during model inference. 
 
Some examples of annotation on sub-tiles of full orthomosaics are shown in Table 1. 
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Table 1: Samples of image tiles with annotations 

 
Out of all the annotated crops, 80 percent are used for the training and 10 percent each are 
used in the validation and test set. Train, validation and test sets are mutually exclusive 
with approximately 1830 images used in the train set and 230 images each in the validation 
and the test set. 
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4.2.​ Training process 
 
For the tree detection model training, we used Detectron-2 as a base platform. Detectron2 
is a PyTorch-based deep learning framework developed by Facebook AI Research (FAIR) for 
object detection and segmentation tasks. Various object detection and segmentation 
models provided by Detectron have been pre-trained on real life scenes and are capable of 
detecting standard real world objects off-the-shelf. However, the standard model is unable 
to detect tree crowns in the drone imagery as it has not previously been trained on such 
objects. As a result, after fetching one of the standard models from the model library, it is 
further trained using the  annotated train set. 
 
We use faster_rcnn_R_50_FPN_3x from the standard Detectron-2 library. This is a Faster 
R-CNN object detection model with a ResNet-50 backbone and Feature Pyramid Network 
(FPN), trained on the COCO dataset using a 3x training schedule (36 epochs).  
 
Annotations are in coco-json format and a single annotation file containing annotations for 
all the images is provided to the faster_rcnn_R_50_FPN_3x model for further training. We 
use Google’s collaborative platform for model training. 
 
 
 

4.3.​ Model Selection 
 

During the training process, versions of the model are saved after every few epochs and 
training loss and validation losses are recorded. As seen in Figure 2,the training loss 
continues to decrease throughout the period of model training while the loss function on 
the validation set initially falls and then starts to go up indicating that the model is starting 
to overfit to the training dataset. A model corresponding to the number of epochs for the 
lowest point on the validation curve is selected and with this model, the test is evaluated to 
understand the model performance. 
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Figure 2: Model selection based on train-Validation loss 

 
 
 

4.4.​ Model Evaluation 
 

The model is evaluated on a set of images previously unseen by it both in the training and 
validation set. The model has a precision of 0.89 and a recall of 0.89. Some sample model 
predictions and annotations are shown in Table 2. 
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Table 2: Sample annotated and predicted images (Left images with blue boxes are annotated images 
and images on right with red boxes are predicted images) 
 
 
 

5.​ Estimation of the tree trunk diameter (DBH) with uncertainty 
quantification: Gaussian Process Regression 

​
A typical empirical method for estimating biomass involves predicting the AGB (above 
ground biomass) of the tree using its DBH (diameter at breast height) or DBH in 
combination with the tree height. In this work, we will consider the biomass estimation 
using only tree DBH. In order to perform biomass estimation on an agroforestry plot, an 
orthomosaic of the plantation is acquired using drone imagery. Along with this RGB image 
of the plot, an elevation model or Digital Elevation Map (DEM) is also obtained. This DEM 
gives the height of each pixel in the image. Once a bounding box containing each tree is 
obtained using a tree detection algorithm, the crown size (referred to henceforth as TC: 
Tree Crown) of the tree can be easily calculated based on the size of the bounding box in 
pixels and the ground sampling distance (GSD). Mapping this bounding box on to DEM, tree 
height (TH) can also be extracted. However, the DBH of the tree can not be directly obtained 
from the drone imagery as this feature is hidden underneath the tree canopy and can not be 
directly observed from an overhead drone image.  
 
This necessitates development of a regression model that can predict the DBH of the tree as 
a function of known features: Tree Crown and Tree Height. Along with this, due to this 
additional uncertainty introduced by the regression model (direct measurement of DBH vs 
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predicting it using TC and TH), some methodology needs to robustly capture the 
uncertainty in this DBH prediction and propagate it at the biomass level in order to allow 
uncertainty quantification about the biomass estimates at the plot level.  
 
Here, instead of fixed estimate regression models like various types of linear, polynomial 
regressions and neural networks, a Gaussian Process Regression is a natural model of 
choice as it is able to not only provide inference about the expected value of a query point 
but also the expected uncertainty in the inference.  
 
 

5.1.​ Data collection for DBH model training 
​
On field measurements were conducted for various agroforestry species that are involved 
in the operations. For each measured datapoint, TC, TH and DBH value was obtained. A 
total of 3500 such datapoints are collected.  
 
 

5.2.​ Assumptions  
 

In this work, both the estimation of biomass from DBH using the allometric equations as 
well as fitting of gaussian process regressor to predict DBH from TH and TC are considered 
species agnostic. This simplification, though has its limitations, allows for a robust practical 
implementation and automated cascading of data pipeline from drone imagery to biomass 
estimation without needing to identify the tree species at the time of tree detection. The 
uncertainties stemming from this assumption are embedded in and quantified by the 
gaussian process regressor as presented in the future sections. 
 
 

5.3.​ Model Training  
 

Based on the collected data with three variables recorded for each tree: Tree Crown, Tree 
Height and DBH, the natural choice for gaussian process model training is to learn DBH as a 
function of Tree Crown and Tree Height. However, in this work, it is more convenient to 
instead learn the natural logarithm of DBH as a function of TC and TH. There are two main 
reasons behind this. The AGB is defined as: 
 

 
 

If DBH is learnt via a gaussian process, at inference time, on a query datapoint the value of 
DBH sampled from the learnt mean and covariance matrix can become negative. Although 
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this happens less often, it can occur in certain cases and can as such be expected to occur 
when sampling from a Gaussian distribution with a positive mean value that is closer to 
zero and a higher standard deviation. As DBH can not be a negative value, it is instead more 

convenient and robust to learn the term  which can freely take negative values 
when sampled from a gaussian distribution. 
 
Another reason for choosing log DBH as the target variable to be learnt via gaussian 
process is the tendency of DBH to have a skewed distribution as observed by Bliss & 
Reinker (1964)and Lima et al. (2015). Authors describe the DBH to have a lognormal 
distribution. A target variable with skewed distribution can potentially pose trouble for the 
gaussian process regression. Hence converting the lognormally distributed DBH to 
normally distributed log(DBH) makes the problem better conditioned for the gaussian 
process regressor.  
 
The DBH data gathered for this work shows a similar trend as to one quoted in the papers 
above. Log(DBH) is normally distributed and DBH shows a skewed lognormal distribution. 
The left side plot on Figure 3 shows a highly skewed distribution of DBH data while the 
right hand side plot shows a more normal distribution of the transformed quantity 
log(DBH). 
 

 
Figure 3: Distribution of DBH and log(DBH) 
 

The nature of the DBH data in relation to the available features to define it (TC and TH) 
suggests that there would be a fair amount of aleatoric uncertainty that would need to be 
captured by the gaussian regressor. In contrast to the epistemic uncertainty that can 
potentially be reduced by gathering additional data points where there exist gaps in the 
current training data, the aleatoric uncertainty can not be reduced by fetching more 
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training data while remaining within the current feature space involving only TC and TH. 
The aleatoric nature of uncertainty can also be seen in the vertical stacks of datapoints 
when the DBH is visualized against each feature as shown in Figure 4.  
 

   
Figure 4: DBH plotted vs TH and TC 
 
 

Datapoints stacking vertically indicate the presence of several distinct observations for the 
same input feature values. This is further confirmed when looking at the total feature space 
including both TC and TH. For example, there are 110 data points where TC = 5.5 feet and 
TH = 6 feet while the DBH_cm value varies for each datapoint. 10 datapoints out of these 
110 are shown in Table  for clarification. Many such instances exist in the dataset where for 
a given combination of input features (TC, TH) multiple distinct outputs exist (DBH_cm).  
 

Number TC_foot TH_foot DBH_cm 

1 5.5 6 6.366198 

2 5.5 6 9.55414 

3 5.5 6 8.917197 

4 5.5 6 10.191083 

5 5.5 6 7.324841 

6 5.5 6 7.006369 

7 5.5 6 7.324841 

8 5.5 6 9.55414 

9 5.5 6 6.687898 

10 5.5 6 6.369427 

Table 3: Aleatoric uncertainty in DBH data 
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This observation further confirms the presence of aleatoric uncertainty in the data within 
the available feature space that can not be removed or reduced by acquisition of additional 
training data. In other words, the data indicates features beyond TC and TH (but 
unavailable and or unknown) that influence the DBH value of trees and need to be dealt 
with through the uncertainty quantification mechanism offered by the gaussian processes. 
 
Entire data is divided into three disjoint sets namely: Train, Validation and Test sets. After 
randomly shuffling the datapoints, 70% of the gathered data is picked for training and 15% 
of the data goes into the Validation and Test sets respectively. An Radial Basis Function 
(RBF) kernel of the form shown below is used 
 

 
 

Where, theta represents a scalar multiplier and L represents the length scale of the 
function. Both these are hyperparameters and are learnt by the gaussian process regressor 
during run time. Epistemic uncertainty at unknown query points previously unseen during 
the training process can be captured by a variance matrix of the trained gaussian process 
that depends only on the covariances between the train-train, test-train and test-test sets 
via the kernel function. However, in order to capture the aleatoric uncertainty, an additional 

variance term  is introduced in the variance matrix as described by Eyke 
Hüllermeier and Willem Waegeman (Aleatoric and epistemic uncertainty in machine 

learning: an introduction to concepts and methods). This  is an additional 
hyperparameter that is specified during the initialization of the gaussian process regressor 
and learnt directly from the Y_train under the assumption of a homoscedastic gaussian 
process. 
 
  

5.4.​ Model selection using validation set 
 

From the family of trained models, the best model is selected by looking at the the 
performance of each model on the validation set on two factors. Mean Absolute Percentage 
Error and slope of coverage. Coverage of a gaussian process regression is plotted as 
described below.  
 
For every trained model, inference is made on all points in the validation set (mu and 
standard deviation) using the trained gaussian process regressor. Then using the standard 
deviation for every prediction, it is checked whether the true value lies within the 
confidence interval given by the predicted standard deviation applied around the predicted 
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mean or expected value. The percentage of total points lying within the given interval is 
noted and this process is repeated for a range of confidence intervals. For example, with a 
well calibrated gaussian process regressor, it is expected that 60 percent of the true values 
from validation set lie within the 60% confidence interval around expected mean 
prediction of each data point. When plotted over a range of confidence intervals, the 
coverage plot is expected to have a slope of close to 1 if the model is well calibrated. An 
under confident model has a slope less than one and an overconfident model has a slope 
greater than one.  
 
The best model among the trained models, shows a slope of 1.08 and a mean absolute 
percentage error of 8.59. This suggests a well trained and well calibrated model that can 
now be used for inference on the test set. The coverage plot for the model is shown in 
Figure 5. 
 

 
     ​ ​ Figure 5: Coverage plot for a well calibrated Gaussian Regressor 
 
 
 
 

5.5.​ Inference on test set 
 

After fitting, the mean and variance from the gaussian process regressor take the following 
form. 
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 is the test set with size  by .  is the number of datapoints in the test 
set and we have  = 2 since we have 2 features (TH and TC).  is of size  

by .  is of size  by 1.  is a scalar.  is a matrix of 

dimensions  by n_train.  is a matrix of size  by .  is 
an identity matrix of size .  is a vector of size  by 1. 
 

 is a matrix of dimension  by .  is an identity matrix of size  

by .  is a matrix of size  by .  is a matrix of size 
 by .  is a covariance matrix of size  by . 

 
The trained Gaussian Process regressor is evaluated for its performance using the test set 
that is mutually exclusive from both the train and validation set. The mean absolute error 
on the test set is 6.16. The plot of true log(DBH) and the predicted log(DBH) by the model is 
shown in Figure 6. 
 

 
Figure 6: DBH model evaluation on the test set 
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For comparison, 10 sample data points for true log(DBH) and expected log(DBH) value as 
predicted by the gaussian processor regressor are shown in Table 4.  
 

No. True log(DBH) Predicted log(DBH) Percentage error 

1 1.15836229 1.70089886 -46.83651865 

2 2.43929614 2.33557051 4.252277052 

3 2.2897644 2.45832627 -7.36153772 

4 1.15836229 1.34381548 -16.00994711 

5 2.3215131 2.08671689 10.11393001 

6 2.66243969 2.34831182 11.79849711 

7 2.63996683 2.5016821 5.238123768 

8 2.91622021 2.96576166 -1.69882404 

9 2.18798171 2.1020281 3.928442802 

10 2.35228476 2.26882753 3.547922064 

Table 4: True vs predicted log(DBH) 
 
 

6.​ Tree crown Estimation and validation 

 

As discussed above, the DBH is a function of tree crown size and tree height. For training 
the DBH model, the data gathered for tree crown size is the average of tree crown width in 
NS and EW direction. The same needs to be extracted from the object detection model for 
the detected trees. This is applicable only for the larger trees (3 years and older) as they are 
annotated by drawing boxes tangential to their crowns while smaller trees are annotated 
with boxes that are slightly larger due to their very small size and the detection purpose is 
only for survival and documentation in the case of small trees. 
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For each detected tree, the crown size in EW and NS direction is calculated as the length of 
the bounding box in pixels in that direction multiplied by the ground sampling distance. 
Ground sampling distance is the amount of length on the ground covered by each pixel of 
the image. Once TC EW and TC NS are calculated, they are averaged to get the size of the 
tree crown. This data extraction process is validated using ground data for 10 trees and is 
presented in Table 5. 
 

No. 
Crown size in foot from image 

analysis 
Crown size in foot from field 

measurement 
% error in crown size 

1 10.93513229 11.7 6.537330892 

2 13.35768467 12.85 -3.950853434 

3 18.20278943 16 -13.76743396 

4 15.44377144 15.15 -1.939085428 

5 16.48681483 15 -9.912098858 

6 19.01030689 17.15 -10.84727052 

7 18.64019472 17.5 -6.515398422 

8 15.17459895 14.5 -4.652406575 

9 14.29978837 13.7 -4.378017306 

10 12.75204657 11.55 -10.40732963 

Table 5: Tree crown size measured on ground vs derived from drone image 
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7.​ Tree Height Estimation and validation 

 

Aerial photogrammetry gives the output as the RGB image and Digital Elevation Model 
(DEM). DEM is a single channel data with a single number representing height of every 
pixel. Visualization of a DEM for a plot with trees is shown in Figure 1 above. 
​
Height of each predicted tree can be calculated from the digital elevation model. First, the 
bounding box of a tree detected in the orthomosaic image is mapped to a corresponding 
location in the DEM file. From here, the highest elevation in that region (corresponding to 
the top of the tree crown) along with the lowest elevation in the immediate neighborhood 
of the tree can be used to calculate the tree height. Table 6 shows comparison of the actual 
measured tree height by field survey and height deduced using drone based approach. 
 

No. 
Tree height in foot from image 

analysis 
Tree height in foot from 

field measurement 
% error in tree height 

1 17.88962915 16 -11.81018216 

2 19.59312682 17 -15.25368717 

3 16.59483475 15.8 -5.030599659 

4 11.50116244 12.5 7.990700488 

5 13.23009143 13.8 4.129772259 

6 14.67206707 13.9 -5.55443932 

Table 6: Tree height measured on ground vs derived from drone image​
 
 

8.​ Estimation of Carbon Sequestration: Methodology 

 

In the forestry literature, the equations for the tree biomass estimation are developed 
based on the actual measurement of the tree biomass and other input parameters(DBH, 
Height) and find the relation between them. We have used such equations for the 
estimations of the biomass. For the Carbon Credit Projects, Verra has listed some of the 
region-specific equations. We have used the equation from Verra Literature.  
 
AGB = exp{-1.996 + 2.32 * ln(DBH)}​
AGB - Above-ground biomass in Kg 
DBH - Diameter at breast height in cm 
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BGB - Below-ground biomass in Kg 
 
Carbon Stock in a tree 
= 50% of the total biomass of tree 
= 0.5 * (AGB + BGB)​
= 0.5 * (AGB + Root shoot Ratio*ABG) 
 
With Root Shoot Ratio assumed at 0.27 
Carbon Stock in a tree 
=  0.5 * 1.27 * AGB 
 
Considering molecular weight ratio for Carbon,                                         
Carbon Sequestration by tree = 44/12 * 0.5 * 1.27 * AGB 
 
Hence, all the calculations can be cascaded from knowing the AGB and this can be 
calculated by applying the above mentioned formula once we have an estimate for the DBH 
of every tree. 
 
 

9.​ Data Collection  

 
9.1.​ Drone Data collection 

 
●​ Orthomosaic and DEM have a ground sampling distance of approximately 2.5 cm 

and this is maintained across the datasets. 
●​ Orthomosaic and DEM are cropped to the exact plot boundary for automatic 

cascading of the entire pipeline. This prevents trees outside of the plot boundaries 
being included in the carbon calculation. 

●​ Drone flying speed is set to around 10 m/s and this gives a good balance of time 
needed to gather the data and data quality.​
 

9.2.​ Data Variations 
 

There are three main categories of trees when it comes to tree crown detection: 
 
1. Fully Grown trees 
2. Medium-sized trees of height 10-20 feet. 
3. Small Trees of height less than 10 feet. 
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Since the model needs to work well on all these scenarios, care is taken to include imagery 
for trees from all these classes. Other types of variations expected in the model as shown in 
Figure 7. 
 

 
Figure 7: Different data variations in the trees 

​
Some of these variations are much more significant than others. So,  the data is collected for 
the variations mentioned below and used for the training of the model: 

●​ Tree Species 
●​ Tree Age, Height, and Crown 
●​ Planting Density 
●​ Monoculture/Mixed 
●​ Variations as per Season 

 
Other variations will be included in the future versions of the model for more coverage in 
terms of geography and on ground differences in how plantations/trees look. 
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9.3.​ Geographies where data is collected 
 

1. Existing Plantation of Farmers in our Implementation area - Shrigonda, Parner, Karjat, 
Jamkhed block: 

●​ Plantation of age 1-3yr -  Farmers who are part of the carbon credit project. 
●​ Plantation of age: 3-10yr - Other Farmers in F4F’s implementation area (most of this 

will be monoculture) 
 

2. F4F Plantation of 2022-23 - mixed plantation of 1 yr old. 
 
 

10.​ Results 

 

Here, we present three case studies by implementing our drone based biomass estimation 
technique on land parcels where agro-forestry has been implemented and compare the 
results with biomass estimation done using the manual approach. 
 
With drone approach, we follow the following steps: 

1.​ Gathering drone data: Orthomosaic and Digital Elevation Model 
2.​ Tree detection 
3.​ Tree detection cleanup 
4.​ Extracting tree heights and crown sizes 
5.​ Estimating DBH using Gaussian processes 
6.​ Estimating the biomass distribution mean and standard deviation using Gaussing 

processes 
 
For manual measurement, we selected a few plots and conducted manual measurements 
with following steps: 

1.​ Measurement of tree height, tree crown, DBH on a subset of trees in the plot 
2.​ Calculating the biomass using DBH or DBH and tree height for all the measured trees 
3.​ Summing up the biomass of measured trees to get total measured biomass 
4.​ Extrapolating this to the entire plot based on the total number of trees in the plot 

and number of trees measured 
 
These two approaches can then be compared to understand how the drone based biomass 
detection approach performs.  
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Case Study 1 
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Number of trees measured on the ground = 30 
Number of trees on the plot = 115 
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Total amount of AGB calculated and summed up for the 30 manually measured trees = 4732 
Total amount of AGB extrapolated to the plot from the measurement of 30 trees = 18142. 
 
Distribution of total AGB from Gaussian processes: 
 

 
 

Mean AGB from the gaussian process distribution: 15480 
Standard deviation from the gaussian process distribution: 1856 
 
The on ground extrapolated AGB is contained within the +- 20% window of the mean 
expected biomass predicted by the gaussian process. 
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Case Study 2 
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Number of trees measured on the ground = 30 
Number of trees on the plot = 130 
 
Total amount of AGB calculated and summed up for the 30 manually measured trees = 1313 
Total amount of AGB extrapolated to the plot from the measurement of 30 trees = 5693. 
 
Distribution of total AGB from Gaussian processes: 
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Mean AGB from the gaussian process distribution: 5680 
Standard deviation from the gaussian process distribution: 590 
 
The on ground extrapolated AGB is contained within the +- 20% window of the mean 
expected biomass predicted by the gaussian process. 
 
 

11.​ Limitations 

While our Detectron2-based tree detection model achieves 89% precision and recall, 
manual verification remains necessary before biomass calculations. This limitation is 
inherent to current computer vision systems where 100% accuracy is unattainable, 
particularly in complex agroforestry environments with varying tree sizes, overlapping 
canopies, and diverse species compositions. 

The Gaussian Process Regression model for DBH prediction, despite achieving a mean 
absolute error of 6.16 on log(DBH), can, in some scenarios, exhibit significant uncertainty 
bounds that must be properly communicated to end users. The model's performance varies 
considerably across different tree sizes and species, with larger uncertainties observed for 
types and sizes of trees that are either unseen or seen infrequently by the training dataset. 
With continued addition of diverse data and regular model retraining, this model will 
continue to improve. 

Our approach makes several simplifying assumptions that limit its generalizability: 

Species-Agnostic Modeling: Both the allometric equations and Gaussian Process models 
treat all tree species uniformly. While this enables automated processing without species 
identification, it introduces systematic errors where species-specific growth patterns 
deviate significantly from the generalized model. The uncertainty quantification partially 
captures this limitation, but explicit species modeling would improve accuracy. However, 
this is not an inherent limitation of the overall technical stack. With improvement in species 
identification, species specific allometry can be easily adopted. Work is currently underway 
along this line. 

Allometric Equation Dependency: The biomass estimation relies on pre-existing allometric 
equations from Verra's VMD0001 methodology. These equations were developed for 
specific regional contexts and may not accurately represent the diverse agroforestry 
systems we encounter.  
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Geographic Scope: Training data was collected exclusively from Maharashtra's semi-arid 
agroforestry systems. Model performance in different climatic zones, soil types, or 
management practices remains unvalidated. The Gaussian Process uncertainty estimates 
may not adequately capture epistemic uncertainty when applied to significantly different 
geographic contexts. A solution to this is to add training images from varying geographical 
regions. Eventually the goal of the model is to make it applicable across India/globe. 

Seasonal and Temporal Bias: Data collection occurred during specific seasons, potentially 
missing important phenological variations that could affect crown size measurements and 
tree health assessments. Deciduous species during leaf-off periods, or drought-stressed 
trees, may not be accurately represented in our training data. Similar to geographical scope, 
the model's temporal coverage can be improved by adding images from various seasons. 

Scale Limitations: While our approach works well for plot-level analysis (1-5 hectares), 
computational and logistical constraints limit its application to larger landscapes without 
significant infrastructure investment. Processing very large orthomosaics (>10GB) requires 
substantial cloud computing resources. 

Processing Pipeline Dependencies: The current pipeline requires significant manual 
oversight at multiple stages - from flight planning to data preprocessing to model output 
validation. While automation reduces labor compared to ground-based methods, the 
system is not yet robust enough for fully autonomous operation. 

Conservative Bias Implementation: Our recommendation to claim biomass credits for 80% 
of estimated values, while ensuring conservative estimates, may systematically undervalue 
projects. This trade-off between accuracy and conservatism requires careful consideration 
in carbon market applications. 

Temporal Validation Gap: Case studies demonstrate reasonable agreement between 
drone-based and manual measurements at single time points, but longitudinal validation 
over multiple years remains limited. Growth rate predictions and multi-temporal change 
detection accuracy require extended validation periods. 

Several technical limitations point toward necessary future developments, which we will 
continue to work on and share in subsequent editions of our white paper, including: 

●​ 3D Modeling Integration: Incorporating LiDAR data for volumetric biomass 
estimation rather than relying solely on allometric equations 

●​ Multi-spectral Analysis: Expanding beyond RGB imagery to include near-infrared 
and other spectral bands for improved tree health and species discrimination 
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●​ Automated Quality Control: Developing robust automated validation systems to 
reduce manual oversight requirements 

●​ Edge Case Handling: Improving model performance for challenging scenarios such 
as very dense plantations, mixed-age stands, and stressed vegetation 

These limitations do not invalidate the methodology, but highlight areas where users 
should exercise caution and where future research should focus to improve system 
robustness and accuracy. 

 

12.​ Conclusion 

 
The automated calculation of biomass using drone imagery is able to estimate the total 
biomass on an agroforestry plantation by extracting the relevant data about tree 
dimensions from drone Orthomosaics and the DEM. The gaussian process is able to capture 
the uncertainties in DBH predictions and cascade them down to the biomass estimation 
level. The case studies show that on field measurements based biomass calculations are 
captured within 20% boundaries of the mean expected biomass as per the drone image 
processing via gaussian processes. Claiming the biomass credits for 80% of the biomass 
estimated by the gaussian process is assured to not overestimate the biomass numbers and 
helps in establishing a conservative yet reasonably accurate estimates for the biomass. 
Although there are limitations to be overcome, key pieces of the tech stack are in place that 
can be independently improved to make the overall tech stack more robust. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

38 



References 
 

1.​ Zhou, L., Li, X., Zhang, B., Xuan, J., Gong, Y., Tan, C., Huang, H., & Du, H. (2022). 
Estimating 3D Green Volume and Aboveground Biomass of Urban Forest Trees by 
UAV-Lidar. Remote Sensing, 14(20), 5211. https://doi.org/10.3390/rs14205211 

2.​ Jayathunga, S., Owari, T., & Tsuyuki, S. (2018). The use of fixed–wing UAV 
photogrammetry with LiDAR DTM to estimate merchantable volume and carbon 
stock in living biomass over a mixed conifer–broadleaf forest. International Journal 
of Applied Earth Observation and Geoinformation, 73, 767–777. 
https://doi.org/10.1016/j.jag.2018.08.017 

3.​ T. Mayamanikandan, R. Suraj Reddy and C. S. Jha, "Non-Destructive Tree Volume 
Estimation using Terrestrial Lidar Data in Teak Dominated Central Indian Forests," 
2019 IEEE Recent Advances in Geoscience and Remote Sensing : Technologies, 
Standards and Applications (TENGARSS), Kochi, India, 2019, pp. 100-103, doi: 
10.1109/TENGARSS48957.2019.8976068. 

4.​ Verified Carbon Standard. (2022). VMD0001 Estimation of carbon stocks in the 
above- and below ground biomass in live tree and non-tree pools (CP-AB), v1.2. 
Verra. https://verra.org 

5.​ Brahma, B., Nath, A. J., Deb, C., Sileshi, G. W., Sahoo, U. K., & Das, A. K. (2021). A 
critical review of forest biomass estimation equations in India. Trees, Forests and 
People, 5, 100098. https://doi.org/10.1016/j.tfp.2021.100098 

6.​ Sileshi, G. W. (2014). A critical review of forest biomass estimation models, common 
mistakes and corrective measures. Forest Ecology and Management, 329, 237–254. 
https://doi.org/10.1016/j.foreco.2014.06.026 

7.​ Ke, Y., & Quackenbush, L. J. (2011). A comparison of three methods for automatic 
tree crown detection and delineation from high spatial resolution imagery. 
International Journal of Remote Sensing, 32(13), 3625–3647. 
https://doi.org/10.1080/01431161003762355 

8.​ Zheng, J., Fu, H., Li, W., Wu, W., Zhao, Y., Dong, R., & Yu, L. (2020). Cross-regional oil 
palm tree counting and detection via a multi-level attention domain adaptation 
network. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 154–177. 
https://doi.org/10.1016/j.isprsjprs.2020.07.002 

9.​ Yao, L., Liu, T., Qin, J., Lu, N., & Zhou, C. (2021). Tree counting with high 
spatial-resolution satellite imagery based on deep neural networks. Ecological 
Indicators, 125, 107591. https://doi.org/10.1016/j.ecolind.2021.107591 

10.​Neupane B, Horanont T, Hung ND (2019) Deep learning based banana plant 
detection and counting using high-resolution red-green-blue (RGB) images collected 
from unmanned aerial vehicle (UAV). PLoS ONE 14(10): e0223906. 
https://doi.org/10.1371/journal.pone.0223906 

39 

https://doi.org/10.3390/rs14205211
https://doi.org/10.1016/j.jag.2018.08.017
https://doi.org/10.1016/j.jag.2018.08.017
https://verra.org
https://doi.org/10.1016/j.tfp.2021.100098
https://doi.org/10.1016/j.foreco.2014.06.026
https://doi.org/10.1080/01431161003762355
https://doi.org/10.1016/j.isprsjprs.2020.07.002
https://doi.org/10.1016/j.isprsjprs.2020.07.002
https://doi.org/10.1016/j.ecolind.2021.107591
https://doi.org/10.1371/journal.pone.0223906


11.​Skole, D. L., Samek, J., Mehra, S., Bajaj, R., & Tamay, T. (2025). Monitoring the extent of 
trees outside of forests in South Asia: Nature-based solutions for climate change 
mitigation. In Remote sensing of land cover and land use changes in South and 
Southeast Asia (Vol. 1, 1st ed., p. 28). CRC Press. 
https://doi.org/10.1201/9781003396253 

12.​Weinstein BG, Marconi S, Aubry-Kientz M, Vincent G, Senyondo H, White EP. 
DeepForest: A PYTHON package for RGB deep learning tree crown delineation. 
Methods Ecol Evol. 2020; 11: 1743–1751. 
https://doi.org/10.1111/2041-210X.13472 

13.​Weinstein, B. G., Marconi, S., Bohlman, S. A., Zare, A., & White, E. P. (2020). Cross-site 
learning in deep learning RGB tree crown detection. Ecological Informatics, 56, 
101061. https://doi.org/10.1016/j.ecoinf.2020.101061 

14.​Khan, S. and Gupta, P. K.: Comparative Study of Tree Counting Algorithms in Dense 
and Sparse Vegetative Regions, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 
XLII-5, 801–808, https://doi.org/10.5194/isprs-archives-XLII-5-801-2018, 2018. 

15.​C. I. Bliss, K. A. Reinker, A Lognormal Approach to Diameter Distributions in 
Even-Aged Stands, Forest Science, Volume 10, Issue 3, September 1964, Pages 
350–360, https://doi.org/10.1093/forestscience/10.3.350 

16.​Renato Augusto Ferreira de Lima, João Luís Ferreira Batista, Paulo Inácio Prado, 
Modeling Tree Diameter Distributions in Natural Forests: An Evaluation of 10 
Statistical Models, Forest Science, Volume 61, Issue 2, April 2015, Pages 320–327, 
https://doi.org/10.5849/forsci.14-070 

 
 
 

40 

https://doi.org/10.1201/9781003396253
https://doi.org/10.1111/2041-210X.13472
https://doi.org/10.1016/j.ecoinf.2020.101061
https://doi.org/10.5194/isprs-archives-XLII-5-801-2018
https://doi.org/10.1093/forestscience/10.3.350
https://doi.org/10.5849/forsci.14-070

	Research Paper Cover Page
	98d00ec9e33a667010eee77ac3291364ccd322a3fdc58249eb112c72edf70122.pdf
	1.​Introduction 
	 
	2.​Carbon Credit and Quantification of Carbon Sequestrations 
	3.​Tree Crown Detection 
	4.​Tree Detection Model Training 
	5.​Estimation of the tree trunk diameter (DBH) with uncertainty quantification: Gaussian Process Regression 
	6.​Tree crown Estimation and validation 
	7.​Tree Height Estimation and validation 
	8.​Estimation of Carbon Sequestration: Methodology 
	9.​Data Collection  
	10.​Results 
	11.​Limitations 
	12.​Conclusion 
	References 


